Sharp Oracle Inequalities for Aggregation of Affine Estimators
نویسندگان
چکیده
We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinations of various procedures such as least square regression, kernel ridge regression, shrinking estimators and many other estimators used in the literature on statistical inverse problems. As a consequence, we show that the proposed aggregate provides an adaptive estimator in the exact minimax sense without neither discretizing the range of tuning parameters nor splitting the set of observations. We also illustrate numerically the good performance achieved by the exponentially weighted aggregate.
منابع مشابه
Aggregation of Affine Estimators
Abstract: We consider the problem of aggregating a general collection of affine estimators for fixed design regression. Relevant examples include some commonly used statistical estimators such as least squares, ridge and robust least squares estimators. Dalalyan and Salmon [DS12] have established that, for this problem, exponentially weighted (EW) model selection aggregation leads to sharp orac...
متن کاملOptimal aggregation of affine estimators
We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinati...
متن کاملLinear and convex aggregation of density estimators
We study the problem of learning the best linear and convex combination of M estimators of a density with respect to the mean squared risk. We suggest aggregation procedures and we prove sharp oracle inequalities for their risks, i.e., oracle inequalities with leading constant 1. We also obtain lower bounds showing that these procedures attain optimal rates of aggregation. As an example, we con...
متن کاملLearning by mirror averaging
Given a collection of M different estimators or classifiers, we study the problem of model selection type aggregation, i.e., we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a simple recursive procedure which solves an auxiliary stochastic linear programming problem rel...
متن کاملSharp oracle bounds for monotone and convex regression through aggregation
We derive oracle inequalities for the problems of isotonic and convex regression using the combination of Q-aggregation procedure and sparsity pattern aggregation. This improves upon the previous results including the oracle inequalities for the constrained least squares estimator. One of the improvements is that our oracle inequalities are sharp, i.e., with leading constant 1. It allows us to ...
متن کامل